Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(6): 1283-1291, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310019

RESUMEN

Smallpox, caused by the variola virus belonging to the genus Orthopoxvirus, is an acute contagious disease that killed 300 million people in the 20th century. Since it was declared to be eradicated and the national immunization program against it was stopped, the variola virus has become a prospective bio-weapon. It is necessary to develop a safe vaccine that protects people from terrorism using this biological weapon and that can be administered to immunocompromised people. Our previous study reported on the development of an attenuated smallpox vaccine (KVAC103). This study evaluated cellular and humoral immune responses to various doses, frequencies, and routes of administration of the KVAC103 strain, compared to CJ-50300 vaccine, and its protective ability against the wild-type vaccinia virus Western Reserve (VACV-WR) strain was evaluated. The binding and neutralizing-antibody titers increased in a concentration-dependent manner in the second inoculation, which increased the neutralizing-antibody titer compared to those after the single injection. In contrast, the T-cell immune response (interferon-gamma positive cells) increased after the second inoculation compared to that of CJ-50300 after the first inoculation. Neutralizing-antibody titers and antigen-specific IgG levels were comparable in all groups administered KVAC103 intramuscularly, subcutaneously, and intradermally. In a protective immunity test using the VACV-WR strain, all mice vaccinated with CJ-50300 or KVAC103 showed 100% survival. KVAC103 could be a potent smallpox vaccine that efficiently induces humoral and cellular immune responses to protect mice against the VACV-WR strain.


Asunto(s)
Vacuna contra Viruela , Viruela , Virus de la Viruela , Animales , Ratones , Humanos , Viruela/prevención & control , Vacunas Atenuadas , Estudios Prospectivos , Virus Vaccinia/genética , Inmunidad Celular , Antígenos Virales , Anticuerpos Antivirales , Ratones Endogámicos BALB C
2.
Vaccine ; 41(41): 6055-6063, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37648607

RESUMEN

Hand, foot, and mouth disease (HFMD) is a highly contagious viral infection that is mainly caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16). As there are no specific therapeutics for HFMD, the development of a bivalent vaccine is required to cover a broad range of infections. In this study, the effectiveness of novel monovalent and bivalent vaccines targeting EV71 C4a and CVA16 was investigated for their ability to prevent viral infections in neonatal human scavenger receptor class B member 2 (hSCARB2) transgenic mice. As hSCARB2 serves as a key viral receptor for EV71, these transgenic mice are susceptible to EV71 strains and facilitate viral binding, internalization, and uncoating processes. Antisera prepared by vaccine immunization were transferred to 2-day-old hSCARB2 transgenic mice, which were then infected with EV71 C4a or CVA16 virus. The antisera generated by each monovalent or bivalent vaccine effectively protected against EV71 C4a and CVA16 infections. The examination of tissue damage and viral contents in various organs indicated that both monovalent and bivalent antisera reduced EV71 C4a viral load in the brainstem, and no significant tissue damage was observed. During CVA16 infection, the monovalent and bivalent antisera significantly reduced viral contents in both the brainstem and muscles. These results suggest that passive immunity by monovalent and bivalent antisera can effectively protect against EV71 C4a and CVA16 infections. Thus, the development of a bivalent vaccine that can provide broad protection against both CV and EV infections may be a promising strategy in preventing HFMD.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Humanos , Animales , Ratones , Enterovirus Humano A/genética , Vacunas Combinadas , Enfermedad de Boca, Mano y Pie/prevención & control , Sueros Inmunes , Ratones Transgénicos
3.
Biomol Ther (Seoul) ; 31(3): 350-358, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37041034

RESUMEN

Hand-foot-and-mouth disease (HFMD) is a viral infectious disease that occurs in children under 5 years of age. Its main causes are coxsackievirus (CV) and enterovirus (EV). Since there are no efficient therapeutics for HFMD, vaccines are effective in preventing the disease. To develop broad coverage against CV and EV, the development of a bivalent vaccine form is needed. The Mongolian gerbil is an efficient and suitable animal model of EV71 C4a and CVA16 infection used to investigate vaccine efficacy following direct immunization. In this study, Mongolian gerbils were immunized with a bivalent inactivated EV71 C4a and inactivated CVA16 vaccine to test their effectiveness against viral infection. Bivalent vaccine immunization resulted in increased Ag-specific IgG antibody production; specifically, EV71 C4a-specific IgG was increased with medium and high doses and CVA16-specific IgG was increased with all doses of immunization. When gene expression of T cell-biased cytokines was analysed, Th1, Th2, and Th17 responses were found to be highly activated in the high-dose immunization group. Moreover, bivalent vaccine immunization mitigated paralytic signs and increased the survival rate following lethal viral challenges. When the viral RNA content was determined from various organs, all three doses of bivalent vaccine immunization were found to significantly decrease viral amplification. Upon histologic examination, EV71 C4a and CVA16 induced tissue damage to the heart and muscle. However, bivalent vaccine immunization alleviated this in a dose-dependent manner. These results suggest that the bivalent inactivated EV71 C4a/CVA16 vaccine could be a safe and effective candidate HFMD vaccine.

4.
Mol Pharm ; 14(2): 423-430, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-27936751

RESUMEN

Efficient delivery of drugs to the retina is critical but difficult to achieve with current methods. There have been a number of attempts to use intravitreal injection of liposomes, artificial vesicles composed of a phospholipid bilayer, to overcome the limitations of conventional intravitreal injection (short retention time, toxicity, poor penetration, etc.). Here, we report an optimal liposomal formulation that can diffuse through the vitreous humor, deliver the incorporated agents to all retinal layers effectively, and maintain them for a relatively long time. We first delivered lipophilic compounds and phospholipid-conjugated hydrophilic agents to the inner limiting membrane using engineered liposomes. Subsequently, the agents penetrated the retina deeply, presumably via extracellular vesicles, nanoscale vesicles secreted from retinal-associated cells. These results suggest that this engineered liposomal formulation can leverage the biological transport system for effective retinal penetration of lipophilic and lipid-conjugated agents.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Lípidos/química , Liposomas/administración & dosificación , Liposomas/química , Retina/efectos de los fármacos , Retina/metabolismo , Animales , Química Farmacéutica/métodos , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/administración & dosificación , Fosfolípidos/química , Cuerpo Vítreo/efectos de los fármacos , Cuerpo Vítreo/metabolismo
5.
J Nanosci Nanotechnol ; 12(1): 446-50, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22524000

RESUMEN

Electrohydrodynamic (EHD) jet printing is a technique using electric fields to eject inks through nozzle apertures. EHD jet printing is very attractive due to its non-contacting nature and compatibility with diverse materials and substrates. In this research, we have fabricated micron-sized dot arrays and line patterns with carbon black ink on Si wafer substrates using EHD jet printing. The effect of operating conditions such as applied voltage, working distance and stage speed on the size and shape of the jetted patterns and jetting cycles is investigated by using optical microscope, high speed camera and atomic force microscopy (AFM). We have also demonstrated the drop-on-demand feature of the EHD jet printing system by patterning carbon black ink lines with various widths and dot arrays with desired diameters and spacing by controlling the operating conditions.


Asunto(s)
Tinta , Microfluídica/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Hollín/síntesis química , Campos Electromagnéticos , Ensayo de Materiales , Tamaño de la Partícula , Agua/química
6.
J Nanosci Nanotechnol ; 12(1): 475-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22524005

RESUMEN

In this research, we have fabricated micron-sized patterns of porphyrins on silicon substrates using an electrohydrodynamic (EHD) jet printing technique. Optical and fluorescence microscopies have been used to examine the shape and fluorescence property of porphyrin patterns. The morphology of the porphyrin patterns printed with variously formulated porphyrin inks and the effects of applied voltage, working distance, and substrate properties on the morphology of patterns were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have also demonstrated the acid-vapor sensing capability of the porphyrins by exposing the porphyrin patterns on Si substrates to nitric acid vapor.


Asunto(s)
Cristalización/métodos , Galvanoplastia/métodos , Impresión Molecular/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Porfirinas/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...